Approximation of slow and fast dynamics in multiscale dynamical systems by the linearized Relaxation Redistribution Method

نویسنده

  • Eliodoro Chiavazzo
چکیده

In this paper, we introduce a fictitious dynamics for describing the only fast relaxation of a stiff ordinary differential equation (ODE) system towards a stable low-dimensional invariant manifold in the phase-space (slow invariant manifold SIM). As a result, the demanding problem of constructing SIM of any dimensions is recast into the remarkably simpler task of solving a properly devised ODE system by stiff numerical schemes available in the literature. In the same spirit, a set of equations is elaborated for local construction of the fast subspace, and possible initialization procedures for the above equations are discussed. The implementation to a detailed mechanism for combustion of hydrogen and air has been carried out, while a model with the exact Chapman-Enskog solution of the invariance equation is utilized as a benchmark.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Stochastic Parameterization for Reduced Models of Multiscale Dynamics

Multiscale dynamics are frequently present in real-world processes, such as the atmosphere-ocean and climate science. Because of time scale separation between a small set of slowly evolving variables and much larger set of rapidly changing variables, direct numerical simulations of such systems are difficult to carry out due to many dynamical variables and the need for an extremely small time d...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

A Computational Method to Extract Macroscopic Variables and Their Dynamics in Multiscale Systems

This paper introduces coordinate-independent methods for analyzing multiscale dynamical systems using numerical techniques based on the transfer operator and its adjoint. In particular, we present a method for testing whether an arbitrary dynamical system exhibits multiscale behavior and for estimating the time-scale separation. For systems with such behavior, we establish techniques for analyz...

متن کامل

Suppression of Chaos at Slow Variables by Rapidly Mixing Fast Dynamics through Linear Energy-preserving Coupling

Abstract. Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the...

متن کامل

Canard cycles in Global Dynamics

Fast-slow systems are studied usually by “geometrical dissection” [4]. The fast dynamics exhibit attractors which may bifurcate under the influence of the slow dynamics which is seen as a parameter of the fast dynamics. A generic solution comes close to a connected component of the stable invariant sets of the fast dynamics. As the slow dynamics evolves, this attractor may lose its stability an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 231  شماره 

صفحات  -

تاریخ انتشار 2012